Answer each question using the proper gas law. Identify all constants before working problems. Use consistent units for pressure, and ALWAYS use Kelvins for temperature.

1. The gas left in a used aerosol can is at a pressure of 1 atm at $27^{\circ} \mathrm{C}$. If this can is thrown into a fire, what is the internal pressure of the gas when its temperature reaches $927^{\circ} \mathrm{C}$?

2. A sample of carbon dioxide occupies a volume of 3.50 L at 125 kPa . What pressure would the gas exert if the volume were decreased to 2.00 L ?

3. Fluorine exerts a pressure of 900 . torr. When the pressure is changed to 1.5 atm , its volume is 250 mL . What was the original volume?

4. A sample of N_{2} occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C}$?

5. Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when it occupies a volume of 2.3 L . To what temperature in Celsius should it be raised to occupy a volume of 6.5 L ?

given	gas law	work
		ANSWER:$T_{2}=885 \mathrm{~K}=612^{\circ} \mathrm{C}$
	FORMULA	
	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	

6. A sample of propane occupies 250.0 L at 125 kPa and $38^{\circ} \mathrm{C}$. Find its volume at 100.0 kPa and $95^{\circ} \mathrm{C}$.

7. The volume of a gas is 200.0 mL at 275 K and 92.1 kPa . Find its volume at STP.

GIVEN	GAS LAW	WORK
		ANSWER:
		$V_{2}=181 m L$
	FORMULA	
	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$	

