Acid-Base Chemistry Practice Chemistry

1 Sodium hydroxide is used as a base in a simple acid/base reaction with hydrochloric acid.
a) Complete the chemical reaction below. Write the names of each chemical (reactants and products) under each respective formula.
Equation: $\quad \mathrm{NaOH}(a q)+\mathrm{HCl}(\mathrm{aq}) \longrightarrow$
Names:
b) You will need 400 mL of 0.15 M NaOH for this lab. Calculate the mass in grams of NaOH you should mix in water to make this solution.
c) 250 mL of 0.80 M HCl is required for this lab. A 2.0 M HCl solution is found, so you decide to dilute this for your lab. Calculate the amount of 2.0 M solution you should use for this dilution with water.

2 Water molecules can interact with each other.
a) Why do water molecules interact with one another?
b) Draw a network of at least five water molecules and show how at least two of them interact.
c) Draw the autoionization of water. Write names for the products.

3 Titrations are an important part of acid-base analysis.
a) Write a step by step procedure for performing a titration. Underline required equipment.
b) Draw a set-up of a titration to the right of the procedure. Label major equipment.

4. Acids and bases are very important in chemistry.
a) Give one definition of an acid.
b) Give one definition of a base.
c) What is the pH scale? How can you relate acids and bases on the pH scale?
d) What happens when an acid and a base react? Give an example of such a reaction and diagram any combinations, decompositions, or displacements on the reaction.

1 Sodium hydroxide is used as a base in a simple acid/base reaction with hydrochloric acid.
a) Complete the chemical reaction below. Write the names of each chemical (reactants and products) under each respective formula.
Equation:

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)
$$

Names: sodium hydroxide hydrochloric acid sodium chloride water
b) You will need 400 mL of 0.15 M NaOH for this lab. Calculate the mass in grams of NaOH you should mix in water to make this solution.

$$
M=\frac{n}{V} \quad \Rightarrow n=0.15 \times 0.400=0.06 \mathrm{~mol} \mathrm{NaOH}
$$

$$
0.15 M=\frac{n}{0.400 \mathrm{~L}} \quad \Rightarrow \quad \Rightarrow 0.06 \mathrm{~mol} \mathrm{NaOH} \cdot \frac{40.00 \mathrm{~g}}{\mathrm{~mol}}=2.4 \mathrm{~g} \mathrm{NaOH}
$$

c) $\quad 250 \mathrm{~mL}$ of 0.80 M HCl is required for this lab. A 2.0 M HCl solution is found, so you decide to dilute this for your lab. Calculate the amount of $2.0 M$ solution you should use for this dilution with water.
$M_{1} V_{1}=M_{2} V_{2}$
$2 M \cdot V_{1}=0.80 \mathrm{M} \cdot 250 \mathrm{ml}$
$V_{1}=100 \mathrm{ml}$
$2 \quad$ Water molecules can interact with each other.
a) Why do water molecules interact with one another?

- Hydrogen bonds
- Polarity
- Lone pairs on oxygen
b) Draw a network of at least five water molecules and show how at least two of them interact.

c) Draw the autoionization of water. Write names for the products.

3 Titrations are an important part of acid-base analysis.
a) Write a step by step procedure for performing a titration. Underline required equipment.
b) Draw a set-up of a titration to the right of the procedure. Label major equipment.

1	Fill buret near top with standard solution. Record initial reading.
2	Obtain unknown acid (or base) using graduated cylinder. Record exact volume. Place in Erlenmeyer flask.
3	Place one drop of indicator solution (such as phenolphthalein) in flask with unknown.
5	Place Erlenmeyer flask under buret. Open stopcock on buret and allow standard solution into the unknown dropwise while swirling. Continue adding dropwise until color change is permanent after swirling. Record final buret volume.
6	Once color indicator shows change, slow or stop standard solution.
7	

4. Acids and bases are very important in chemistry.
a) Give one definition of an acid.

- Excess H^{+}
- Proton donor
- Electron acceptor
- $\mathrm{pH}<7$
b) Give one definition of a base.
- Excess OH^{-}
- Proton acceptor
- Electron donor
- $\mathrm{pH}>7$
c) What is the pH scale? How can you relate acids and bases on the pH scale?
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$. Measures acid or base content of a solution compared to neutral water, $\mathrm{pH}=7$.
Acids have $\mathrm{pH}<7$. Bases have a $\mathrm{pH}>7$.
d) What happens when an acid and a base react? Give an example of such a reaction and diagram any combinations, decompositions, or displacements on the reaction.
Acid + Base \rightarrow water + salt
An example is: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

