Molar Mass

Moles

- we cannot (in a practical sense) count atoms individually
- too small, too many
- we use a counting unit called the mole

1 mole =

- the definition is called number

- sometimes expressed as

Atomic mass units

- to convert numbers of atoms using something easily measurable (mass in grams), we use AMU's
- these have units of grams for 1 mol , or:
- carbon is used to standardize the mole, since ${ }_{6}^{12} C$ is a very common isotope of carbon
- thus, 12 g Carbon $\equiv 12 \mathrm{~mol}$ Carbon
- the periodic table average atomic mass can be used to calculate number of moles from a given mass, or how much mass goes into a given number of moles

Ex Calculate the number of moles of each mass.
a) $\quad 110 . \mathrm{g} \mathrm{Au}$
b) $\quad 0.16 \mathrm{~g} \mathrm{He}$
c) $\quad 19.25 \mathrm{~g} \mathrm{Si}$
d) $\quad 453.6 \mathrm{~g} \mathrm{C}$

Ex Calculate the mass in grams equivalent to the given number of moles.
a) $\quad 3.00 \mathrm{~mol} \mathrm{~K}$
b) $\quad .0025 \mathrm{~mol} \mathrm{Xe}$
c) $\quad 7.5 \mathrm{~mol} \mathrm{Al}$
d) $\quad 1.5 \mathrm{~mol} \mathrm{Na}$

Molar Mass

- for compounds, we calculate the molar mass by simply adding up the atomic masses of each element
- molar mass can then be used for the same calculations we just did for atomic mass

Ex Calculate the molar masses of each compound.
a) $\quad \mathrm{N}_{2}$
b) $\quad \mathrm{MgS}$
c) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
d) $\quad \mathrm{KMnO}_{4}$
e) $\mathrm{H}_{2} \mathrm{O}$
f) $\quad \mathrm{CH}_{3} \mathrm{OH}$
g)
h) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Ex Calculate the mass in grams equivalent to the given number of moles.
a) $\quad 5.00 \mathrm{~mol} \mathrm{AgCl}_{2}$
c) $\quad 6.00 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
b) $\quad 2.50 \mathrm{~mol} \mathrm{NaOH}$
d) $\quad 3.333 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

Ex Calculate the number of moles of each mass.
a) 25.11 g KCl b) $.0578 \mathrm{~g} \mathrm{SO}_{2}$

Percent Composition

- in analyzing compounds, it is very important to know how much of a given element is present
- to figure out the composition, we can divide the contribution of each part
- note that the parts must add up to

Ex Calculate the percent composition of
a) $\quad \mathrm{H}_{2} \mathrm{O}$
b) $\quad \mathrm{AgNO}_{3}$

Formula Units: Empirical vs Molecular Formula

- application of Law of Multiple Proportions
- since atoms must come in distinct units, we can find the proportion based on percent composition
- this may not be the actual compound!

Glucose
Uses

Formula

Simplest ratio
Molar Mass
The two different proportions are called:

EMPIRICAL FORMULA

MOLECULAR FORMULA

Ex A common white pigment in paint is made of $59.9 \% \mathrm{Ti}$ and oxygen. Find the empirical formula.

Ex Find the empirical and molecular formula for the compound with molecular weight $98.96 \mathrm{~g} / \mathrm{mol}$ and composition: $71.65 \% \mathrm{Cl}, 24.27 \% \mathrm{C}$, and $4.07 \% \mathrm{H}$.

Ex Analysis shows a mass percent composition of $30.93 \% \mathrm{Al}, 45.86 \% \mathrm{O}, 20.32 \% \mathrm{Cl}$, and $2.89 \% \mathrm{H}$. What is the formula of this compound?

Ex Caffeine is composed of $49.48 \% \mathrm{C}, 5.15 \% \mathrm{H}, 28.87 \% \mathrm{~N}$, and 16.49% O by mass. It has a molecular weight of $194.2 \mathrm{~g} / \mathrm{mol}$. Find the molecular formula.

