1. Calculate the mass percent of the following solutions:
(a) $15.0 \mathrm{~g} \mathrm{KCl}+100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(b) $2.50 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}+10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(c) $0.20 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+125 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

2. Determine the volume percent of a solution made by dissolving:

(a) 50.0 mL of hexanol in enough ethanol to make 125 mL of solution

$$
\begin{aligned}
& \frac{50 m \mathrm{~L}}{125}=40 \% \text { hexamol } \\
& \frac{75 \% \mathrm{~L}}{125 \mathrm{ml}}=60 \% \text { ethanol }
\end{aligned}
$$

(b) 2.0 mL of ethanol in enough methanol to make 15.0 mL of solution
3. Calculate the molarity of the following solutions:

4. Calculate the number of moles of solute in each of the following solutions:
(a) 1.5 L of $1.20 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(b) 25.0 mL of $0.0015 \mathrm{M} \mathrm{BaCl}_{2}$
(c) 125 mL of $0.35 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$
$0.35 m=\frac{n}{0.125 L}$
$n=0.125 L \times 0.35 m=0.44 \mathrm{~mol}$

$$
0.35 m=\frac{n}{0.125 l}
$$

$$
n=0.125 \mathrm{~L} \times 0.35 \mathrm{~m}=0.44 \mathrm{~mol}
$$

(e) 0.75 L of $1.50 \mathrm{M} \mathrm{HNO}_{3}$
(d) 175 mL of 0.50 M LiBr
(f) 10.0 mL of $0.75 \mathrm{M} \mathrm{NaClO}_{3}$
5. Calculate the grams of solute in each of the following solutions:
(a) 2.5 L of $0.75 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$
(c) 250 mL of $16 \mathrm{M} \mathrm{HNO}_{3}$

$$
\begin{aligned}
& \text { (b) } 400 \mathrm{~mL} \text { of } 0.35 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4} \\
& 35 \mathrm{M}=\frac{\Lambda}{0.400 \mathrm{~L}} \\
& \Rightarrow n_{1}=0.35 \times 0.400=0.14 \mathrm{~mol} \\
& \begin{array}{ll}
3 \mathrm{Na}=69 \\
10 & =61 \\
40 & =64
\end{array} \quad 0.14 \mathrm{mot} \times 164 \mathrm{l} \\
& =23 \mathrm{~g} \mathrm{Na,} 104 \\
& 1647 / 01
\end{aligned}
$$

(d) 75 mL of $0.050 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
6. What will be the molarity of the resulting solutions made by mixing the following? Assume that volumes are additive.

(a) 125 mL of $5.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ with 775 mL of $\mathrm{H}_{2} \mathrm{O}$ (b) 250 mL of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ with 750 mL of $\mathrm{H}_{2} \mathrm{O}$ (c) 75 mL of $0.50 \mathrm{M} \mathrm{HNO}_{3}$ with 75 mL of $1.5 \mathrm{M} \mathrm{HNO}_{3}$ (d) 175 mL of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 275 mL of $\mathrm{H}_{2} \mathrm{O}$ (e) 350 mL of $0.10 \mathrm{M} \mathrm{CuSO}_{4}$ with 150 mL of $\mathrm{H}_{2} \mathrm{O}$ (f) 50.0 mL of 0.250 M HCl with 25.0 mL of 0.500 M HCl 	

6. What will be the molarity of the resulting solutions made by mixing the following? Assume that volumes are additive.

| (a) 125 mL of $5.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ with 775 mL of $\mathrm{H}_{2} \mathrm{O}$ (b) 250 mL of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ with 750 mL of $\mathrm{H}_{2} \mathrm{O}$
 (c) 75 mL of $0.50 \mathrm{M} \mathrm{HNO}_{3}$ with 75 mL of $1.5 \mathrm{M} \mathrm{HNO}_{3}$ (d) 175 mL of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 275 mL of $\mathrm{H}_{2} \mathrm{O}$
 (e) 350 mL of $0.10 ~ M \mathrm{CuSO}_{4}$ with 150 mL of $\mathrm{H}_{2} \mathrm{O}$ (f) 50.0 mL of 0.250 M HCl with 25.0 mL of 0.500 M HCl |
| :--- | :--- |

7. Calculate the volume of concentrated reagent required to prepare the diluted solutions indicated:
(a) $15 \mathrm{MH}_{3} \mathrm{PO}_{4}$ to prepare 750 mL of $3.0 \mathrm{MH}_{3} \mathrm{PO}_{4} \quad$ (b) $16 \mathrm{M} \mathrm{HNO}_{3}$ to prepare 250 mL of $0.50 \mathrm{MHNO}_{3}$
8. Calculate the volume of concentrated reagent required to prepare the diluted solutions indicated:
(a) $15 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to prepare 750 mL of $3.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
(b) $16 \mathrm{M} \mathrm{HNO}_{3}$ to prepare 250 mL of $0.50 \mathrm{M} \mathrm{HNO}_{3}$
