Molarity Chemistry 1. Calculate the mass percent of the following solut	
(a) 15.0 g KCl + 100.0 g H_2O	(b) 2.50 g Na ₃ PO ₄ + 10.0 g H ₂ O
(c) 0.20 mol NH ₄ C ₂ H ₃ O ₂ + 125 g H ₂ O $N = \frac{14}{14}$ $2.20 \text{ obs} \frac{77}{79} = \frac{15.49}{140.4} \text{ PH}_{4}C_{2}H_{3}C_{3}C_{4}$ $2.0 = 32$ $\frac{15.4}{140.4} = \frac{117.84}{140.4} = \frac{117.84}{140.4}$	(d) 1.50 mol NaOH in 33.0 mol H ₂ O
2. Determine the volume percent of a solution made (a) 50.0 mL of hexanol in enough ethanol to make 125 mL of solution $\frac{50 \text{ mL}}{725} = 40^{\circ} \text{ / hexanol}^{\circ}$ $\frac{75 \text{ - L}}{725 \text{ mL}} = 60^{\circ} \text{ / ethanol}$	 by dissolving: (b) 2.0 mL of ethanol in enough methanol to make 15.0 mL of solution
3. Calculate the molarity of the following solutions: (a) 0.25 mol of solute in 75.0 mL of solution	(b) 1.75 mol of KBr in 0.75 L of solution
(c) 0.50 mol of solute in 125 mL of solution	(d) 2.25 mol of CaCl ₂ in 1.50 L of solution
(e) 1.5mol HF in 2.5L of solution	(f) 95.4g KNO ₃ in 750mL of solution K = 39.1 N = 14 3D = 48 101.19/mo1 $M = \frac{0.943mo1}{0.743mo1} = 1.26M KNO_3$
(g) 35.0 g of NaC ₂ H ₃ O ₂ in 1.25 L of solution	(h) 275 g C ₆ H ₁₂ O ₆ in 775 mL of solution

(c) 125 mL of 0.35 <i>M</i> K ₃ PO ₄	(d) 175 mL of 0.50 <i>M</i> LiBr
$D.35M = \frac{n}{D.125L}$ $n = 0.125L \times 0.354 = 0.44 \text{ mol}$	
(e) 0.75 L of 1.50 <i>M</i> HNO ₃	(f) 10.0 mL of 0.75 <i>M</i> NaClO ₃

5. Calculate the grams of solute in each of the following solutions:

(a) 2.5 L of 0.75 M K₂CrO₄

(b) 400mL of 0.35 *M* Na₃PO₄ 35M= 10.400L $= n = 0.35 \times 0.400 = 0.14 \text{ mol}$ = 59 = 31 $= 0.14 \text{ mol} \times \frac{1649}{1649}$ UD - 64

(c) 250 mL of 16 M HNO₃

(d) 75 mL of 0.050 M HC₂H₃O₂

6. What will be the molarity of the resulting solutions made by mixing the following? Assume that volumes are additive.		
(a) 125 mL of 5.0 $M H_3 PO_4$ with 775 mL of $H_2 O$	(b) 250 mL of 0.25 <i>M</i> Na ₂ SO ₄ with 750 mL of H ₂ O	
(c) 75 mL of 0.50 <i>M</i> HNO ₃ with 75 mL of $1.5 M$ HNO ₃	(d) 175 mL of 3.0 <i>M</i> H ₂ SO ₄ with 275 mL of H ₂ O	
(e) 350 mL of 0.10 <i>M</i> CuSO ₄ with 150 mL of H ₂ O	(f) 50.0 mL of 0.250 <i>M</i> HCl with 25.0 mL of 0.500 <i>M</i> HCl	

6. What will be the molarity of the resulting solutions made by mixing the following?		
(a) 125 mL of 5.0 M H ₃ PO ₄ with 775 mL of H ₂ O	(b) 250 mL of 0.25 M Na ₂ SO ₄ with 750 mL of H ₂ O	
(c) 75 mL of 0.50 M HNO ₃ with 75 mL of 1.5 M HNO ₃	(d) 175 mL of 3.0 M H ₂ SO ₄ with 275 mL of H ₂ O	
(e) 350 mL of 0.10 M CuSO ₄ with 150 mL of H ₂ O	(f) 50.0 mL of 0.250 <i>M</i> HCl with 25.0 mL of 0.500 <i>M</i> HCl	

7. Calculate the volume of concentrated reagent required to prepare the diluted solutions indicated:

(a) $15 M H_3PO_4$ to prepare 750 mL of 3.0 $M H_3PO_4$

(b) 16 M HNO₃ to prepare 250 mL of 0.50 M HNO₃

7. Calculate the volume of concentrated reagent required to prepare the diluted solutions indicated:

(a) $15 M H_3 PO_4$ to prepare 750 mL of 3.0 $M H_3 PO_4$

(b) $16 M HNO_3$ to prepare 250 mL of 0.50 M HNO₃