

A container holds three gases: oxygen, carbon dioxide, and helium. The partial pressures of the three gases are
$2.00 \mathrm{~atm}, 3.00 \mathrm{~atm}$, and 4.00 atm , respectively. What is the total pressure inside the container? 9 atm

$$
\begin{aligned}
& -1=.3 \times 4 \text { att }=1.2 \text { atm } \\
& \text { Ar }=.7 \times 4=2.8 \Delta t m
\end{aligned}
$$

A tank contains 480.0 grams of oxygen and 80.00 grams of helium at a total pressure of 7.00 atmospheres at a temperature of $27^{\circ} \mathrm{C}$. Calculate the following.
a) How many moles of O_{2} are in the tank?
b) How many moles of He are in the tank?
c) Total moles of gas in tank.
d) Total volume of the tank.

(b) What will happen to the pressure when the temperature is doubled while keeping the size of the container and the number of moles constant?

$$
\text { higher } P
$$

(c) What will happen to the pressure when the amount of gas is cut in half while keeping the size of the container and the temperature constant?

$$
\text { lower } P \text { (by half) }
$$

(d) What will happen to the pressure if 1 mole of a different gas is added to the container while keeping the temperature and size of the container the same?

$$
\text { higher } P
$$

$7 \quad$ What volume does 1 mol of an ideal gas occupy at standard conditions?

$$
V=22.4 \mathrm{~L}
$$

8
Explain why it is necessary to add air to a car's tires during the winter.

$$
\text { Colder } \rightarrow \text { lower } P
$$

