$$
Q=m C \Delta T
$$

1. \qquad is the amount of energy that it takes to raise the temperature of 1 gram of a substance by 1 K
2. \qquad is the temperature at which all molecular motion ceases
3. \qquad process is a change in matter in which energy is absorbed
4. \qquad process is a change in matter in which energy is released
5. What is the specific heat of a substance that absorbs 2500 joules of heat when a sample of 100 g of the substance increases in temperature from $10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$?
6. If 200 grams of water is to be heated from $24.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$ to make a cup of tea, how much heat must be added? The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}$
7. How many grams of water would require 2200 joules of heat to raise its temperature from $34^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}$
8. A block of aluminum weighing 140 g is cooled from $98.4^{\circ} \mathrm{C}$ to $62.2^{\circ} \mathrm{C}$ with the release of 1080 joules of heat. From this data, calculate the specific heat of aluminum. Check your answer with a specific heat table.
9. 100.0 mL of $4.0^{\circ} \mathrm{C}$ water is heated until its temperature is $37^{\circ} \mathrm{C}$. If the specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, calculate the amount of heat energy needed to cause this rise in temperature.
10. A total of 54.0 joules of heat are absorbed as 58.3 g of lead is heated from $12.0^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$. From these data, what is the specific heat of lead?
11. The specific heat of wood is $2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How much heat is needed to convert 550 g of wood at $-15.0^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$?
12. What is the total amount of heat needed to change 2.25 kg of silver at $0.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$? The specific heat of silver is $0.129 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
13. Granite has a specific heat of $800 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What mass of granite is needed to store $150,000 \mathrm{~J}$ of heat if the temperature of the granite is to be increased by $15.5^{\circ} \mathrm{C}$?
14. A 55 kg block of metal has an original temperature of $15.0^{\circ} \mathrm{C}$ and $0.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What will be the final temperature of this metal if 450 J of heat energy are added?
15. Object A specific heat is $2.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ and object B specific heat is $0.82 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Which object will heat up faster if they have the same mass and equal amount of heat is applied? Explain why.

Convert the following to Celsius.

1) $32^{\circ} \mathrm{K}$ \qquad
2) 1020 K \qquad
3) $350^{\circ} \mathrm{F}$ \qquad
4) $45^{\circ} \mathrm{K}$ \qquad
5) $200^{\circ} \mathrm{F}$ \qquad
6) $0^{\circ} \mathrm{K}$ \qquad
7) $70^{\circ} \mathrm{K}$ \qquad
8) 273 K \qquad
9) $100^{\circ} \mathrm{F}$ \qquad

Convert the following to Kelvin.

10) $0^{\circ} \mathrm{F}$ \qquad
11) $-50^{\circ} \mathrm{C}$ \qquad
12) $90^{\circ} \mathrm{C}$ \qquad
13) $70^{\circ} \mathrm{F}$ \qquad
14) $-150^{\circ} \mathrm{C}$ \qquad
15) $400^{\circ} \mathrm{F}$ \qquad
1. Specific heat is the amount of energy that it takes to raise the temperature of 1 gram of a substance by 1 degree kelvin
2. Absolute zero is the temperature at which all molecular motion ceases
3. Endothermic process is a change in matter in which energy is absorbed
4. Exothermic process is a change in matter in which energy is released
5. What is the specific heat of a substance that absorbs 2500 joules of heat when a sample of 100 g of the substance increases in temperature from $10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$?
$\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T} \quad \mathrm{C}=\mathrm{Q} / \mathrm{m} \Delta \mathrm{T}=2500 \mathrm{~J} / 100 \mathrm{~g} \cdot 60^{\circ} \mathrm{C}=0.417 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
6. If 200 grams of water is to be heated from $24.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$ to make a cup of tea, how much heat must be added? The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}$
$\mathrm{Q}=\mathrm{m} \mathrm{C} \Delta \mathrm{T}=200 \mathrm{~g} \cdot 4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 76{ }^{\circ} \mathrm{C}=63,536 \mathrm{~J}$
7. How many grams of water would require 2200 joules of heat to raise its temperature from $34^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}$
$\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T} \quad \mathrm{m}=\mathrm{Q} / \mathrm{C} \Delta \mathrm{T}=2200 \mathrm{~J} / 4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 66^{\circ} \mathrm{C}=7.97 \mathrm{~g}$
8. A block of aluminum weighing 140 g is cooled from $98.4^{\circ} \mathrm{C}$ to $62.2^{\circ} \mathrm{C}$ with the release of 1080 joules of heat. From this data, calculate the specific heat of aluminum.

$$
\mathrm{Q}=\mathrm{mC} \Delta \mathrm{~T} \quad \mathrm{C}=\mathrm{Q} / \mathrm{m} \Delta \mathrm{~T}=1080 \mathrm{~J} / 140 \mathrm{~g} \cdot 36.2^{\circ} \mathrm{C}=0.213 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}
$$

9. 100.0 mL of $4.0^{\circ} \mathrm{C}$ water is heated until its temperature is $37^{\circ} \mathrm{C}$. If the specific heat of water is 4.18 $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$, calculate the amount of heat energy needed to cause this rise in temperature.
$\left(1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T}=100 \mathrm{~g} \cdot 4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 33^{\circ} \mathrm{C}=13,794 \mathrm{~J}$
10. A total of 54.0 joules of heat are absorbed as 58.3 g of lead is heated from $12.0^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$. From these data, what is the specific heat of lead?
$\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T} \quad \mathrm{C}=\mathrm{Q} / \mathrm{m} \Delta \mathrm{T}=54 \mathrm{~J} / 58.3 \mathrm{~g} \cdot 30{ }^{\circ} \mathrm{C}=0.031 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
11. The specific heat of wood is $2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How much heat is needed to convert 550 g of wood at $-15.0^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$?

$$
\mathrm{Q}=\mathrm{m} \mathrm{C} \Delta \mathrm{~T}=550 \mathrm{~g} \cdot 2.03 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 25^{\circ} \mathrm{C}=27,912.5 \mathrm{~J}
$$

12. What is the total amount of heat needed to change 2.25 kg of silver at $0.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$? The specific heat of silver is $0.129 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad(2.25 \mathrm{~kg}=2250 \mathrm{~g})$

$$
\mathrm{Q}=\mathrm{m} \mathrm{C} \Delta \mathrm{~T}=2250 \mathrm{~g} \cdot 0.129 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 200^{\circ} \mathrm{C}=58,050 \mathrm{~J}
$$

13. Granite has a specific heat of $800 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What mass of granite is needed to store $150,000 \mathrm{~J}$ of heat if the temperature of the granite is to be increased by $15.5^{\circ} \mathrm{C}$?
$\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T} \quad \mathrm{m}=\mathrm{Q} / \mathrm{C} \Delta \mathrm{T}=150,000 \mathrm{~J} / 800 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \cdot 15.5^{\circ} \mathrm{C}=1.86 \times 10^{9} \mathrm{~g}$
14. A 55 kg block of metal has an original temperature of $15.0^{\circ} \mathrm{C}$ and $0.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What will be the final temperature of this metal if 450 J of heat energy are added?
$\mathrm{Q}=\mathrm{m} \mathrm{C} \Delta \mathrm{T} \Delta \mathrm{T}=\mathrm{Q} / \mathrm{m} \mathrm{C}$ where $\Delta \mathrm{T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}$ so $\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}=\mathrm{Q} / \mathrm{mC}$ and $\mathrm{T}_{\mathrm{f}}=\mathrm{Q} / \mathrm{m} \mathrm{C}+\mathrm{T}_{\mathrm{i}}$
$\mathrm{T}_{\mathrm{f}}=\mathrm{Q} / \mathrm{m} \mathrm{C}+\mathrm{T}_{\mathrm{i}}=\left(450 \mathrm{~J} / 55,000 \mathrm{~g} \cdot 0.45 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)+15.0^{\circ} \mathrm{C}=15.018^{\circ} \mathrm{C}$
15. Object A specific heat is $2.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ and object B specific heat is $0.82 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Which object will heat up faster if they have the same mass and equal amount of heat is applied? Explain why.

Object B has a lower specific heat and requires less heat to raise 1 gram by 1 degree Celsius, therefore, it will heat up faster.

Temperature Conversion

$\mathrm{K}^{\mathrm{o}}=\mathrm{C}^{\mathrm{o}}+273$
$\mathrm{F}^{0}=\left(9 / 5 \times \mathrm{C}^{0}\right)+32$
$\mathrm{C}^{0}=\mathrm{K}^{0}-273$
$\mathrm{C}^{\mathrm{o}}=5 / 9\left(\mathrm{~F}^{\mathrm{o}}-32\right)$

Convert the following to Celsius (-273)

1) $32^{\circ} \mathrm{K}-241^{\circ} \mathrm{C}$
2) $1020^{\circ} \mathrm{K}$
$747{ }^{\circ} \mathrm{C}$
3) $350^{\circ} \mathrm{K} \quad 77^{\circ} \mathrm{C}$
4) $45^{\circ} \mathrm{K}-228{ }^{\circ} \mathrm{C}$
5) $200^{\circ} \mathrm{K} \quad-73^{\circ} \mathrm{C}$
6) $0^{\circ} \mathrm{K} \quad-273{ }^{\circ} \mathrm{C}$
7) $70^{\circ} \mathrm{K}-203{ }^{\circ} \mathrm{C}$
8) $273^{\circ} \mathrm{K} \quad 0{ }^{\circ} \mathrm{C}$
9) $100^{\circ} \mathrm{K} \quad-173{ }^{\circ} \mathrm{C}$

Convert the following to Kelvin (+273)
10) $0^{\circ} \mathrm{C} \quad 273{ }^{\circ} \mathrm{K}$
13) $70^{\circ} \mathrm{C} \quad 343^{\circ} \mathrm{K}$
11) $-50^{\circ} \mathrm{C} \quad 223{ }^{\circ} \mathrm{K}$
14) $-150^{\circ} \mathrm{C} \quad 123^{\circ} \mathrm{K}$
12) $90^{\circ} \mathrm{C} \quad 363^{\circ} \mathrm{K}$
15) $400^{\circ} \mathrm{C} \quad 673{ }^{\circ} \mathrm{K}$

