\qquad

Unit 1 • Observations, Models, \& Experiments

SCIENTIFIC NOTATION \& UNIT ANALYSIS

Change the following to Scientific Notation (maintain the number of significant figures):

1. $\quad 5.280=$
2. $2,000=$ \qquad
3. $15=$ \qquad
4. $6,589,000=$ \qquad
5. $70,400,000,000=$ \qquad
6. . $00263=$ \qquad
7. $.00589=$ \qquad
8. $.006=$ \qquad
9. $.400=$ \qquad
10. $.08060=$ \qquad
11. $2,560=$
12. . $0009=$
13. $8,900,000=$
14. $.0920=$
15. $6,300=$
16. $.90=$
17. $250=$
18. . $006087=$ \qquad
19. $500,000=$
20. $.0000000105=$ \qquad

Make the following Metric System conversions using "unit analysis" (you may use scientific notation):

1. $\quad 100 \mathrm{mg}$ \qquad $=$ \qquad g
2. 20 cm \qquad $=$ \qquad m
3. 50 L \qquad $=$ \qquad kL
4. $\quad 22 \mathrm{~g}$ \qquad $=$ \qquad cg
5. 825 cm \qquad $=$ \qquad km
6. $2,350 \mathrm{~kg}$ \qquad $=$ \qquad g
7. 19 mL \qquad = \qquad cL
8. 52 km \qquad $=$ \qquad m
9. 36 m \qquad $=$ \qquad cm
10. 18 cm \qquad = \qquad mm
11. 6 g \qquad $=$ \qquad mg
12. $4,259 \mathrm{mg}$ \qquad $=$ \qquad g

Unit 1 • Observations, Models, \& Experiments

SIGNIFICANT FIGURES \& ROUNDING

A. Indicate the number of significant figures then round each to the number of significant figures indicated.

For example:

1.234
has \qquad significant figures and, rounded to

1. 0.6034 has \qquad significant figures and, rounded to 2
2. 12,700 has \qquad significant figures and, rounded to 2
3. $12,700.00$ has \qquad significant figures and, rounded to 1
4. 0.000983 has \qquad significant figures and, rounded to 2
5. 123342.9 has \qquad significant figures and, rounded to 5
6. 6.023×10^{23} has \qquad significant figures and, rounded to 2
7. . 005600 has \qquad significant figures and, rounded to 1
8. 10000.5006 has \qquad significant figures and, rounded to 55 significant figures and, rounded to 1
significant figures, is \qquad 1.2
significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad
significant figures, is \qquad
B. Given calculations with the calculator answer, write the answers with the appropriate number of significant figures.

Example:

$6.00 \times 3.00=18 \quad$ The answer should be
$8 \quad(2.355+2.645) \times 10.00=50$
$9 \quad 654 \div 32=20.4375$
10. . 024 x .063

$$
=1.512 \times 10^{-03}
$$

= 69
= 69
$=598.8$
4. $56-35=21$
5. $56.00-35.0=21$
$=552$
7. $3.24 \times 5.63=18.2412$
18.0
\qquad
-

1. $23+46$

The answ should

Change the following to Scientific Notation (maintain the number of significant figures):

1. $5.280=$
5,280
2. $2,560=$
2.56×10^{3}
3. $2,000=$
2×10^{3}
4. $.0009=$

5. $15=$
$1.5 \times 10^{\circ}$
6. $8,900,000=$

$$
8.9 \times 10^{6}
$$

4. $6,589,000=\underline{6.589 \times 10^{6}}$
5. $.0920=$

$$
9.20 \times 10^{-2}
$$

5. $70,400,000,000=7.04 \times 10^{10}$
6. $6,300=$ 6.3×10^{3}
7. $.00263=\quad 2,63 \times 10^{-3}$
8. $90=$
$\frac{9.0 \times 10^{-1}}{8}$
9. $.00589=$
5.89×10^{-3}
10. $250=$ 2.5×10^{2}
11. $.006=$
6×10^{-3}
12. $.006087=$
6.087×10^{-3}
13. $.400=$
4.00×10^{-1}
14. $500,000=$
5×10^{5}
15. $.08060=$
8.060×10^{-2}
16. . $0000000105=$ 1.05×10^{-8}

Make the following Metric System conversions using "unit analysis" (you may use scientific notation):
I. $\quad 100 \mathrm{mg}$
2. 20 cm
3. 50 L
4. $\quad 22 \mathrm{~g}$

$=$
$=$
 m

.05 kL
5. 825 cm
$2200^{\circ} \mathrm{cg}$

$8.25 \times 10^{-3} \mathrm{~km}$
6. $2,350 \mathrm{~kg}$
7. $\quad 19 \mathrm{~mL}$

$2.35 \times 10^{6} 8$ g
8. 52 km

$$
\times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}
$$ $=$ \qquad cL

9. 36 m

$$
\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=
$$ $=3600 \mathrm{~cm}$

10. 18 cm

$$
\times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \vee \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}=
$$

\qquad mm
11. 6 g
12. $4,259 \mathrm{mg}$

$$
\frac{\times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}}{\mathrm{~s}}=
$$

$$
6000
$$ m mg

$$
4.259
$$

A. Indicate the number of significant figures then round each to the number of significant figures indicated.

For example:
1.234
has \qquad significant figures and, rounded to 2

1. 0.6034
has \qquad significant figures and, rounded to 2
2. 12,700 has 3 significant figures and, rounded to 2
3. $12,700.00$ has \qquad significant figures and, rounded to 1
4. 0.00098 \qquad significant figures and, rounded to 2
5. 123342.9 has \qquad significant figures and, rounded to 5
6. 6.023×10^{23} has \qquad significant figures and, rounded to 2
7. . 005600 has \qquad significant figures and, rounded to I
8. 10000.5006 has \qquad significant figures and, rounded to 5
9. 2.0×10^{-3} has \qquad significant figures and, rounded to 1
10. 3.456110 has \qquad significant figures and, rounded to 3
significant figures, is $\quad 1.2$ significant figures, is $\frac{.60}{1.3 \times 10^{4}}$ significant figures, is 13000 or significant figures, is $\frac{10000}{9.8 \times 10^{-4}}$ significant figures, is, 00098 significant figures, is 123340 significant figures, is 6.0×10^{23} significant figures, is .006 significant figures, is 10001 significant figures, is 2×10^{-3} significant figures, is 3.46
B. Given calculations with the calculator answer, write the answers with the appropriate number of significant figures.

Example:

6.00×3.00	$=18$
1. $23+46$	$=69$
2. $23.0+46.0$	$=69$
3. $253+345.8$	$=598.8$
4. $56-35$	$=21$
5. $56.00-35.0$	$=21$
6. 16×12	$=552 \quad 192$
7. 3.24×5.63	$=18.2412$
8 $(2.355+2.645) \times 10.00=50$	
9 $654 \div 32$	$=20.4375$
$10 . ~$	$024 \times .063$

The answer should be 18.0

The answer should be \qquad 69

The answer should be \qquad 69.0

The answer should be 599

The answer should be \qquad
The answer should be \qquad
The answer should be 550

The answer should be 18.2

The answer should be 50.00

The answer should be $\quad 20$, or $2.0 \times 10^{\prime}$
The answer should be 1.5×10^{-3}

